Generalized reliability based on distances

Abstract

The intraclass correlation coefficient (ICC) is a classical index of measurement reliability. With the advent of new and complex types of data for which the ICC is not defined, there is a need for new ways to assess reliability. To meet this need, we propose a new distance-based intraclass correlation coefficient (dbICC), defined in terms of arbitrary distances among observations. We introduce a bias correction to improve the coverage of bootstrap confidence intervals for the dbICC, and demonstrate its efficacy via simulation. We illustrate the proposed method by analyzing the test-retest reliability of brain connectivity matrices derived from a set of repeated functional magnetic resonance imaging scans. The Spearman-Brown formula, which shows how more intensive measurement increases reliability, is extended to encompass the dbICC.

Publication
Biometrics, accepted
Meng Xu
Meng Xu
(Bio)Statistician

問渠那得清如許?為有源頭活水來

comments powered by Disqus